PQRS is a parallelogram whose diagonals intersect at M. ∠PMS=54∘,∠QSR=25∘ and ∠SQR=30∘; (i) ∠RPS (ii) ∠PRS (iii) ∠PSR
Open in App
Solution
Given: Parallelogram PQRS in which diagonals PR and QS intersect at M. ∠PMS=54∘;∠QSR=25∘ and ∠SQR=30∘
To find: (i) ∠RPS (ii) ∠PRS (iii) ∠PSR ⇒>PSQ=∠SQR(Alternate ∠S) But ∠SQR=30∘ ∠PSQ=30∘ In △SMP, ∠PMS+∠PSM+∠MPS=180∘ or 54∘+30∘+∠RPS=180∘ ∠RPS=180∘−84∘=96∘ Now, ∠PRS+∠RSQ=∠PMS ∠PRS+25∘=54∘ ∠PRS=54∘−25∘=29∘ ∠PSR=∠PSQ+∠RSQ=30∘+25∘=55∘ Hence, (i) ∠RPS=96∘ (ii) ∠PRS=29∘(iii) ∠PSR=55∘