√1−sinθ1+sinθ=secθ−tanθ
L.H.S: √1−sinθ1+sinθ
Dividing by cosθ in
numerator and denominator
⎷1cosθ−sinθcosθ1cosθ+sinθcosθ=√secθ−tanθsecθ+tanθ
Rationalising, we get
√secθ−tanθ×secθ−tanθ(secθ+tanθ)×secθ−tanθ
=√(secθ−tanθ)2sec2θ−tan2θ [∵1+tan2θ=sec2θ]
=secθ−tanθ=R.H.S.