wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Proove:
1sinΘ1+sinΘ=secΘtanΘ

Open in App
Solution

1sinθ1+sinθ=secθtanθ
L.H.S: 1sinθ1+sinθ
Dividing by cosθ in
numerator and denominator
    1cosθsinθcosθ1cosθ+sinθcosθ=secθtanθsecθ+tanθ
Rationalising, we get
secθtanθ×secθtanθ(secθ+tanθ)×secθtanθ
=(secθtanθ)2sec2θtan2θ [1+tan2θ=sec2θ]
=secθtanθ=R.H.S.

1130330_1245261_ans_a67ca0d679444d60bbf24c6591d0d355.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Unit Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon