proove that √2 is not a rational number
Let's suppose √2 is a rational number. Then we can write it √2 = a/b where a, b are whole numbers, b not zero.
We additionally assume that this a/b is simplified to lowest terms, since that can obviously be done with any fraction. Notice that in order for a/b to be in simplest terms, both of a and b cannot be even. One or both must be odd. Otherwise, we could simplify a/b further.
From the equality √2 = a/b it follows that 2 = a2/b2, or a2 = 2 · b2. So the square of a is an even number since it is two times something.
From this we know that a itself is also an even number. Why? Because it can't be odd; if a itself was odd, then a · a would be odd too. Odd number times odd number is always odd. Check it if you don't believe me!
Okay, if a itself is an even number, then a is 2 times some other whole number. In symbols, a = 2k where k is this other number. We don't need to know what k is; it won't matter. Soon comes the contradiction.
If we substitute a = 2k into the original equation 2 = a2/b2, this is what we get:
2 | = | (2k)2/b2 |
2 | = | 4k2/b2 |
2*b2 | = | 4k2 |
b2 | = | 2k2 |
This means that b2 is even, from which follows again that b itself is even. And that is a contradiction!!!
WHY is that a contradiction? Because we started the whole process assuming that a/bwas simplified to lowest terms, and now it turns out that a and b both would be even. We ended at a contradiction; thus our original assumption (that √2 is rational) is not correct. Therefore √2 cannot be rational.