We have, z+1z−1=(−1)1/6=(cosπ±isinπ)1/6
Or z+1z−1=(cos(2nπ+π)6±isin(2nπ+π)6)
where n = 0, 1, 2
Or z+1z−1=cosθ±isinθiwhereθ=(2n+1)π6
Apply componendo and dividendo,
2z2=(1+cosθ)±isinθ(cosθ−1)±isinθ
z=2cos2θ2±i2sinθ2cosθ2−2sin2θ2±i2sinθ2cosθ2
z=2cosθ2(cosθ2±i2sinθ2)±2sinθ2(cosθ2±i2sinθ2)∵−1=i2
Or z = ±icotθ2=±cot(2n+1)π12
where n = 0, 1, 2
Or z = ±icotπ12,±cot3π12,±cot5π12