wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Proove that the roots of the equation (z+1)6+(z1)6=0 are given by ±cotπ12,±cot3π12,±cot5π12

Open in App
Solution

We have, z+1z1=(1)1/6=(cosπ±isinπ)1/6
Or z+1z1=(cos(2nπ+π)6±isin(2nπ+π)6)
where n = 0, 1, 2
Or z+1z1=cosθ±isinθiwhereθ=(2n+1)π6
Apply componendo and dividendo,
2z2=(1+cosθ)±isinθ(cosθ1)±isinθ
z=2cos2θ2±i2sinθ2cosθ22sin2θ2±i2sinθ2cosθ2
z=2cosθ2(cosθ2±i2sinθ2)±2sinθ2(cosθ2±i2sinθ2)1=i2
Or z = ±icotθ2=±cot(2n+1)π12
where n = 0, 1, 2
Or z = ±icotπ12,±cot3π12,±cot5π12

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon