Prove 1.2 + 2.3 + 3.4 + ⋯ + n(n+1)=[n(n+1)(n+2)3].
Let P(n)=1.2+2.3+3.4+⋯+n(n+1)=[n(n+1)(n+2)3].
For n = 1
P(1)=1(1+1)=1(1+1)(1+2)3⇒2=2
∴ P (1) is true
Let P (n) be true for n = k
∴P(k)=1.2+2.3+3.4+⋯++k(k+1)=[k(k+1)(k+2)3]For=k+1P(k+1)=1.2+2.3+3.4+⋯+k(k+1)+(k+1)(k+2)=k(k+1)(k+2)3+(k+1)(k+2)=(k+1)(k+2)[k3+1]=(k+1)(k+2)[k+33]=(k+1)(k+2)(k+3)3∴P(k+1) is true
thus P(k) is true ⇒ P(k +1) is true
Hence by principle fo mathematical induction,