Prove 12+32+52+⋯+(2n−1)2=n(2n−1)(2n+1)3
12+32+52+⋯+(2n−1)2=n(2n−1)(2n+1)3
For n = 1
P(1)=(2×1−1)2=1(2×1−1)(2×1+1)3⇒1=1×1×33
∴ P (1) is true
Let P (n) be true for n = k
∴P(k)=12+32+52+⋯+(2k−1)2=k(2k−1)(2k+1)3For n = k + 1R.H.S.=(k+1)(2k+1)(2k+3)3L.H.S.=k(2k−1)(2k+1)3+(2k+1)2=(2k+1)[k(2k−1)3+(2k+1)]=(2k+1)[2k2−k+6k+33]=(2k+1)(2k2+5k+3)3=(2k+1)(k+1)(2k+3)3=(k+1)(2k+1)(2k+3)3∴P(k+1)is true
Thus P(k) is true ⇒ P(k + 1) is true
Hence by principle fo mathematical induction,