wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove 1+2+3++n<18(2n+1)2.

Open in App
Solution

Let P(n)=1+2+3++n<18(2n+1)2.
For n = 1
P(1)=1<18(2×1+1)21<98P(1)is trueLet P (n) be true for n = kP(k)=1+2+3++K<18(2k+1)2For n = k + 1P(k+1)=1+2+3++k+(k+1)<18(2k+3)2From (i) we have1+2+3++k<18(2k+1)2Addingt (k + 1) on both sides, we get1+2+3++k+(k+1)<18(2k+1)62+(k+1)1+2+3++k+(k+1)<18[4k2+4k+1+8k+8]1+2+3++k+(k+1)<18[4k62+12k+9]1+2+3++k+(k+1)<18(2k+3)2k+12+[2×1+(k+11)1]<18(2k+3)2(k+1)(k+2)2<18(2k+3)24(k+1)(k+2)<4k62+9+6k4(k2+3k+2)<4k2+9+6k4k2+12k+8<4k2+9+6k8<9P (k + 1) is true
Thus P (k ) is true P (k + 1) is true
hence by principle of mathematical induction,


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Logarithmic Inequalities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon