Prove 1+2+3+⋯+n<18(2n+1)2.
Let P(n)=1+2+3+⋯+n<18(2n+1)2.
For n = 1
P(1)=1<18(2×1+1)2⇒1<98∴P(1)is trueLet P (n) be true for n = k∴P(k)=1+2+3+⋯+K<18(2k+1)2For n = k + 1P(k+1)=1+2+3+⋯+k+(k+1)<18(2k+3)2From (i) we have1+2+3+⋯+k<18(2k+1)2Addingt (k + 1) on both sides, we get1+2+3+⋯+k+(k+1)<18(2k+1)62+(k+1)1+2+3+⋯+k+(k+1)<18[4k2+4k+1+8k+8]1+2+3+⋯+k+(k+1)<18[4k62+12k+9]1+2+3+⋯+k+(k+1)<18(2k+3)2k+12+[2×1+(k+1−1)1]<18(2k+3)2⇒(k+1)(k+2)2<18(2k+3)2⇒4(k+1)(k+2)<4k62+9+6k⇒4(k2+3k+2)<4k2+9+6k⇒4k2+12k+8<4k2+9+6k⇒8<9∴P (k + 1) is true
Thus P (k ) is true ⇒ P (k + 1) is true
hence by principle of mathematical induction,