1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
General Solution of Trigonometric Equation
Prove: 1+tan...
Question
Prove:
(
1
+
tan
θ
+
sec
θ
)
(
1
+
cos
θ
−
csc
θ
)
=
2
Open in App
Solution
(
1
+
tan
θ
+
sec
θ
)
(
1
+
cos
θ
−
csc
θ
)
=
2
LHS
=
(
1
+
tan
θ
+
sec
θ
)
(
1
+
cos
θ
−
csc
θ
)
=
(
1
+
cos
x
sin
x
−
1
sin
x
)
(
1
+
cos
x
sin
x
+
1
sin
x
)
=
(
sin
x
+
cos
x
−
1
sin
x
)
(
sin
x
+
cos
x
+
1
sin
x
)
=
(
sin
x
+
cos
x
)
2
−
1
sin
x
cos
x
=
sin
2
x
+
cos
2
+
2
sin
x
cos
x
−
1
sin
x
cos
x
=
1
+
2
sin
x
cos
x
sin
x
cos
x
−
1
=
2
=
R
H
S
Suggest Corrections
0
Similar questions
Q.
Prove that :
(
1
+
cot
θ
−
csc
θ
)
(
1
+
tan
θ
+
sec
θ
)
=
2
Q.
Prove that :
(
1
+
tan
θ
+
sec
θ
)
(
1
+
cot
θ
−
cosec
θ
)
=
2
.
Q.
Prove that
1
sec
θ
−
tan
θ
−
1
cos
θ
=
1
cos
θ
−
1
sec
θ
+
tan
θ
.
Q.
Prove that :
(
1
+
c
o
t
θ
−
c
o
s
e
c
θ
)
(
1
+
t
a
n
θ
+
s
e
c
θ
)
=
2
Q.
Prove the following trigonometric identities.
tan
θ
1
-
cot
θ
+
cot
θ
1
-
tan
θ
=
1
+
tan
θ
+
cot
θ