Applying the trigonometric identities in the LHS of 2sin−1(513)=cos−1(119169).
2sin−1(513)=sin−1⎛⎝2(513)√1−(513)2⎞⎠
=sin−1(1013√1−25169)
=sin−1(1013√144169)
=sin−1((1013)(1213))
=sin−1(120169)
Let sin−1(120169)=θ,
120169=sinθ
cosθ=119169
θ=cos−1(119169)
sin−1(120169)=cos−1(119169)
Therefore, 2sin−1(513)=cos−1(119169).
Hence proved.