wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove:
2tan1 (aba+btanθ2)=cos1 (acosθ+ba+bcosθ)

Open in App
Solution

2tan1(aba+btan(x2))
=cos1⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪1(aba+btan(x2))21+(aba+btan(x2))2⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ since 2tan1x=cos1(1x21+x2)
=cos1⎪ ⎪⎪ ⎪a+b(ab)tan2x2a+b+(ab)tan2x2⎪ ⎪⎪ ⎪
=cos1⎪ ⎪⎪ ⎪a+batan2x2+btan2x2a+b+atan2x2btan2x2⎪ ⎪⎪ ⎪
=cos1⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪a(1tan2x2)+b(1+tan2x2)a(1+tan2x2)+b(1tan2x2)⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪
=cos1⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪a⎜ ⎜1tan2x21+tan2x2⎟ ⎟+b⎜ ⎜1+tan2x21+tan2x2⎟ ⎟a⎜ ⎜1+tan2x21+tan2x2⎟ ⎟+b⎜ ⎜1tan2x21+tan2x2⎟ ⎟⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪
=cos1⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪a⎜ ⎜1tan2x21+tan2x2⎟ ⎟+ba+b⎜ ⎜1tan2x21+tan2x2⎟ ⎟⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪
=cos1{acosx+ba+bcosx}
=R.H.S
Hence proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 3
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon