wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove
4tan1(15)tan1(170)+tan1(199)=π4.

Open in App
Solution

To be proved : 4tan115tan1(170)+tan1(199)=π4
We know that 2tan1x=tan1(2x1x2)
So, 2tan115=tan1⎜ ⎜ ⎜ ⎜ ⎜2×151(15)2⎟ ⎟ ⎟ ⎟ ⎟=tan1(512)
LHS:4tan115+tan1199tan1170
=(2tan115tan1170)+(2tan115tan1170)+(2tan115+tan1199)
=(tan1512tan1170)+(tan1512+tan1199)
=tan1⎜ ⎜ ⎜ ⎜5121701+(512)(170)⎟ ⎟ ⎟ ⎟+tan1⎜ ⎜ ⎜ ⎜512+1991(512)(199)⎟ ⎟ ⎟ ⎟
(tan1x+tan1y=tan1(x+y1xy))
=tan1(25)+tan1(37)
=tan1⎜ ⎜ ⎜25+371635⎟ ⎟ ⎟=tan1(1)
=π4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon