To be proved : 4tan−115−tan−1(170)+tan−1(199)=π4
We know that 2tan−1x=tan−1(2x1−x2)
So, 2tan−115=tan−1⎛⎜
⎜
⎜
⎜
⎜⎝2×151−(15)2⎞⎟
⎟
⎟
⎟
⎟⎠=tan−1(512)
LHS:4tan−115+tan−1199−tan−1170
=(2tan−115−tan−1170)+(2tan−115−tan−1170)+(2tan−115+tan−1199)
=(tan−1512−tan−1170)+(tan−1512+tan−1199)
=tan−1⎛⎜
⎜
⎜
⎜⎝512−1701+(512)(170)⎞⎟
⎟
⎟
⎟⎠+tan−1⎛⎜
⎜
⎜
⎜⎝512+1991−(512)(199)⎞⎟
⎟
⎟
⎟⎠
(∵tan−1x+tan−1y=tan−1(x+y1−xy))
=tan−1(25)+tan−1(37)
=tan−1⎛⎜
⎜
⎜⎝25+371−635⎞⎟
⎟
⎟⎠=tan−1(1)
=π4