To prove: (2x+1) is a factor of 4x3+12x2+7x+1.
From Factor theorem, we know that a polynomial f(x) has a factor (x–a) if and only if f(a)=0.
2x+1=0⇒x=−12
So, a=−12
f(a)=f(−12)
=4(−12)3+12(−12)2+7(−12)+1
=4(−18)+12(14)+7(−12)+1
=(−12)+3−(72)+1
=−4+4
=0
∴f(a)=0
Hence,(2x+1) is a factor of 4x3+12x2+7x+1.