Prove by the principle of mathematical induction that 1+2+3+...+n<(2n+1)28, for all n∈N.
Or
Using the principle of mathematical induction, prove that
1.3+2.32+3.33+...+n.3n=(2n−1)3n+1+34. for all n∈N.
Let P(n) be the statement given by
P(n):1+2+3+...+n<(2n+1)28
For n=1, P(1):1<(2+1)28
∵ 1<98
∴ P(1) is true.
Assume that, P(k) be true, for some natural number k.
1+2+3+...+k <(2k+1)28
Now, we will show that P(k+1) is true whenever P(k) is true.
i.e. 1+2+3+...+k+k+1<{2(k+1)+1}28
Now, P(k) is true.
⇒ 1+2+3+...+k <(2k+1)28
⇒ 1+2+3+...+k+(k+1)<(2k+1)28+(k+1)
[adding both sides by (k+1)]
⇒ 1+2+3+...+k+(k+1)<18{(2k+1)2+8(k+1)}
⇒ 1+2+3+...+k+(k+1)<18(4k2+4k+1+8k+8)
⇒ 1+2+3+...+k+(k+1)<18(4K2+12K+9)
⇒ 1+2+3+...+K+(K+1)<18(2k+3)2
⇒ 1+2+3+...+k+(k+1)<18{2(k+1)+1}2
Thus, P(k+1) is true.
Hence, by principle of mathematical induction, P(n) is true, ∀ n∈N.
Let P(n) be the statement given by
P(n):1.3+2.32+3.32+...+n.3n=(2n−1)3n+1+34
For n=1:P(1):l.3={2(1)−1}31+1+34
⇒ 3=9+34 ⇒ 3=3
So, P(1) is true.
Assume that P(k) be true, for some natural number k.
∴ 1.3+2.32+3.33+...+k.3k=(2k−1)3k+1+34 ...(i)
Now, we will show that P(k+1) is true, whenever P(k) is true
i.e. 1.3+2.32+3.33 +...+k.3k+(k+1).3k+1
= {2(k+1)−1}3(k+1)+1+34
Now, 1.3+2.32+3.32 +...+k.3k+(k+1).3k+1
= (2k−1)3k+1+34+(k+1).3k+1 [from Eq. (i)]
= (2k−1)3k+1+3+4(k+1).3k+14
= (2k−1+4k+4).3k+1+34
= (6k+3).3k+1+34
= (2k+1).3k+2+34
= {2(k+1)−1}.3(k+1)+1+34
∴ P(k+1) is true.
Hence, by principle of mathematical induction, P(n) is true, ∀ n∈N.