Prove, cos−11213+sin−135=sin−15665
Given, cos−11213+sin−135=sin−15665
Let cos−11213=θ⇒cosθ=1213∴sinθ=√1−(1213)2 [∵sinθ=√1−cos2θ]⇒sinθ=√25169=513⇒θ=sin−1513
Now, LHS=cos−11213+sin−135+sin−135=sin−1(513√1−(35)2)+35√1−(513)2[∵sin−1x+sin−1y=sin−1(x√1−y2+y√1−x2)]=sin−1(513√1625+35√144169)=sin−1(513×45+35×1213)=sin−1(5665)=RHS
Hence proved.