wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove cos2x+cos2(x+π3)+cos2(xπ3)=32

Open in App
Solution

LHS=cos2x+cos2(x+π3)+cos2(xπ3)
= cos2x+[cos(x+π3)]2+[cos(xπ3)]2
Now use this formula

cos(x+y)=cosxcosysinxsiny

cos(xy)=cosxcosy+sinxsiny

thenLHS=cos2x+[cosxcosπ3sinxsinπ3]2+[cosxcosπ3+sinxsinπ3]2

= cos2x+[12cosx32sinx]2+[12cosx+32sinx]2

(cosπ3=12 ,sinπ3=32)

=cos2x+14cos2x+34sin2x32cosxsinx+14cos2x+34sin2x+32sinxcosx

=cos2x+cos2x2+3sin2x2

=32cos2x+32sin2x

=32(cos2x+sin2x)

=32=RHS

flag
Suggest Corrections
thumbs-up
16
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon