By De-moivre's Theorem we know that
(cos θ + i sin θ)5 = cos 5θ + i sin 5θ
L.H.S. on expansion by binomial theorem is
cos5θ+5cos4θ(isinθ)+10cos3θ(isinθ)2+10cos2θ(isinθ)3+5cosθ(isinθ)4+(isinθ)5
Now equate real and imaginary parts and change
sin2θto1−cos2θandcos2θto1−sin2θ
depending on the answer.
∴ cos 5θ = cos θ (16 cos4θ - 20 cos2θ + 5)
sin = 5θ = sin θ (16 sin4θ - 20 sin2θ + 5)
Deduction : If θ = 36∘, then 5θ = 180∘
∴ sin 5θ = 0
Also sin 36∘ < sin 45∘ or sin236∘<12
Now from (2), we get
0 = s(16 s4 - 20 s2 + 5), s = sin 36∘ ≠ 0
∴s2=20±√400−32032=10−2√516(∵s2<12)
∴s=√10−2√55