We have, cosx+√3sinx
Multiplying and dividing the whole expression by √12+(√3)2=2
We get, 2(12cosx+√32sinx)
We know, cos60∘=12 and sin60∘=√32
Substituting the values, 2(cos60∘cosx+sin60∘sinx)
Using the identity, cos(A−B)=cosAcosB+sinAsinB, the above expression becomes,
2(cos60∘cosx+sin60∘sinx) = 2cos(x−60∘)
LHS=RHS. Hence proved.
Since, the cosine function has a range of [−1,1], the maximum value of 2cos(x−60∘) is equal to 2.
max(2cos(x−60∘)) =2cos(x−60∘)∣∣x=60∘ =2×1=2