wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove (cosecA - sinA) (sec A - cos A) = 1tanA+cotA

Open in App
Solution

LHS = (cosecA - sinA ) ( sec A - cos A ) = (1sinAsinA) (1cosAcosA)

= (1sin2AsinA1cos2AcosA) = (cos2AsinAsin2AcosA) [ ∵ sin2A+cos2A = 1 ]

= sin A cos A = sinAcosAsin2A+cos2A [ ∵ sin2A+cos2A = 1 ]

= sinAcosAsinAcosAsin2AsinAcosA+cos2AsinAcosA [ Dividing the numerator and denominator by sin A cos A. ]

= 1tanA+cotA = RHS

Hence proved .


flag
Suggest Corrections
thumbs-up
14
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon