Prove (cosecA - sinA) (sec A - cos A) = 1tanA+cotA
LHS = (cosecA - sinA ) ( sec A - cos A ) = (1sinA−sinA) (1cosA−cosA)
= (1−sin2AsinA1−cos2AcosA) = (cos2AsinAsin2AcosA) [ ∵ sin2A+cos2A = 1 ]
= sin A cos A = sinAcosAsin2A+cos2A [ ∵ sin2A+cos2A = 1 ]
= sinAcosAsinAcosAsin2AsinAcosA+cos2AsinAcosA [ Dividing the numerator and denominator by sin A cos A. ]
= 1tanA+cotA = RHS
Hence proved .