wiz-icon
MyQuestionIcon
MyQuestionIcon
4
You visited us 4 times! Enjoying our articles? Unlock Full Access!
Question

Prove:
1+cotθ+tanθ)(sinθcosθ)sec3θcosec3θ=sin2θcos2θ.

Open in App
Solution

On LHS, write cotθ=cosθsinθ and tanθ=sinθcosθ

Also, secθ=1cosθ , cosecθ=1sinθ

= (1+cosθsinθ+sinθcosθ)(sinθcosθ)1cos3θ1sin3θ

= (sinθ+cos2θ+sin2θ)(sinθcosθ)(sinθcosθ)sin3θcos3θsin3θcos3θ

= sin3θcos3θ(sinθcosθ)(sin3θcos3θ)sin3θcos3θ

= sin2θcos2θ

Hence proved.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of a Right Triangle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon