wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove 1secxtanx1cosx=1cosx1secx+tanx

Open in App
Solution

LHS
1secxtanx1cosx
=11cosxsinxcosx1cosx
=(cosx)21+sinx(cosx)(1sinx)
sin2θ+cos2θ=1
=(sinx)2+sinx(cosx)(1sinx)
=(sinx)(1sinx)(cosx)(1sinx)=tanx

RHS
=1secx+tanx+1cosx
=11cosx+sinxcosx1cosx
=(cosx)2+1+sinx(cosx)(1sinx)
=(sinx)2+sinx(cosx)(1+sinx)
=(sinx)(1+sinx)(cosx)(1+sinx)=tanx
LHS=RHS

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Principal Solution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon