We know that in a triangle a=ksinA,b=ksinB,c=ksinC and cosA=b2+c2−a22bc and similarly using it for cosB andcosC
So,sin2Aa2=2a2sinAcosA=2aka2b2+c2−a22bc=b2+c2−a22kabc
sin2Bb2=2b2sinBcosB=2bkb2c2+a2−b22ca=c2+a2−b22kabc
sin2Cc2=2c2sinCcosC=2ckc2a2+b2−c22ab=a2+b2−c22kabc
Thus,
L.H.S=(b2−c2)sin2Aa2+(c2−a2)sin2Bb2+(a2−b2)sin2Cc2
=(b2−c2)b2+c2−a22kabc+(c2−a2)c2+a2−b22kabc+(a2−b2)a2+b2−c22kabc
=12akbc[(b2−c2)(b2+c2−a2)+(c2−a2)(c2+a2−b2)+(a2−b2)(a2+b2−c2)]
=12akbc[b4−c4−a2(b2−c2)+c4−a4−b2(c2−a2)+a4−b4−c2(a2−b2)]
=12akbc[−a2b2+a2c2−b2c2+b2a2−c2a2+c2b2]
=12akbc(0)=0=R.H.S
Hence proved