wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove:
cos3A+sin3AcosA+sinA+cos3Asin3AcosAsinA=2

Open in App
Solution

a3+b3=(a+b)(a2ab+b2)

a3b3=(ab)(a2+ab+b2)

so cos3A+sin3A=(cosA+sinA)(cos2AcosAsinA+sin2A)

so[cos3A+sin3A][cosA+sinA]=1sinAcosA(1)

sin2A+cos2A=1

similarly cosAsin2A=(cosAsinA)(cos2A+sinAcosA+sin2A)

so [cos3Asin3A][cosAsinA]=1+sinAcosA(2)

so adding both equation (1) and (2) 1sinAcosA+1+sinAcosA=2

Hence Proved.

flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon