Consider the L.H.S.
=cos3θ+2cos5θ+cos7θcosθ+2cos3θ+cos5θ
=cos5θ+cos3θ+cos7θ+cos5θcos5θ+cos3θ+cos3θ+cosθ
We know that
cosC+cosD=2cos(C+D2)⋅cos(C−D2)
Therefore,
=2cos(5θ+3θ2)⋅cos(5θ−3θ2)+2cos(7θ+5θ2)⋅cos(7θ−5θ2)2cos(5θ+3θ2)⋅cos(5θ−3θ2)+2cos(3θ+θ2)⋅cos(3θ−θ2)
=cos(8θ2)⋅cos(2θ2)+cos(12θ2)⋅cos(2θ2)cos(8θ2)⋅cos(2θ2)+cos(4θ2)⋅cos(2θ2)
=cos4θ⋅cosθ+cos6θ⋅cosθcos4θ⋅cosθ+cos2θ⋅cosθ
=cos6θ+cos4θcos4θ+cos2θ
=2cos(6θ+4θ2)⋅cos(6θ−4θ2)2cos(4θ+2θ2)⋅cos(4θ−2θ2)
=cos5θ⋅cosθcos3θ⋅cosθ
=cos5θcos3θ
=cos(3θ+2θ)cos3θ
We know that
cos(A+B)=cosAcosB−sinAsinB
Therefore,
=cos3θcos2θ−sin3θsin2θcos3θ
=cos2θ−sin2θtan3θ
R.H.S
Hence, proved.