wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove cos3θ+2cos5θ+cos7θcosθ+2cos3θ+cos5θ=cos2θsin2θtan3θ

Open in App
Solution

Consider the L.H.S.

=cos3θ+2cos5θ+cos7θcosθ+2cos3θ+cos5θ

=cos5θ+cos3θ+cos7θ+cos5θcos5θ+cos3θ+cos3θ+cosθ

We know that

cosC+cosD=2cos(C+D2)cos(CD2)

Therefore,

=2cos(5θ+3θ2)cos(5θ3θ2)+2cos(7θ+5θ2)cos(7θ5θ2)2cos(5θ+3θ2)cos(5θ3θ2)+2cos(3θ+θ2)cos(3θθ2)

=cos(8θ2)cos(2θ2)+cos(12θ2)cos(2θ2)cos(8θ2)cos(2θ2)+cos(4θ2)cos(2θ2)

=cos4θcosθ+cos6θcosθcos4θcosθ+cos2θcosθ

=cos6θ+cos4θcos4θ+cos2θ

=2cos(6θ+4θ2)cos(6θ4θ2)2cos(4θ+2θ2)cos(4θ2θ2)

=cos5θcosθcos3θcosθ

=cos5θcos3θ

=cos(3θ+2θ)cos3θ

We know that

cos(A+B)=cosAcosBsinAsinB

Therefore,

=cos3θcos2θsin3θsin2θcos3θ

=cos2θsin2θtan3θ

R.H.S

Hence, proved.


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon