wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove : cos3θsin3θcosθsinθ+cos3θ+sin3θcosθ+sinθ=2

Open in App
Solution

Proof :
LHS:cos3θsin3θcosθsinθ+cos3θ+sin3θcosθ+sinθ
we use two identities,
a3b3=(ab)(a2+b2+ab)
a3+b3=(a+b)(a2+b2ab)
using the above identities,
=(cosθsinθ)(cos2θsin2θ+cosθ.sinθ)(cosθsinθ)+(cosθ+sinθ)(cos2θsin2θcosθ.sinθ)(cosθ+sinθ)
=cos2θ+sin2θ+cosθ.sinθ+cos2θ+sin2θcosθ.sinθ
=2(cos2θ+sin2θ)
=2 (cos2θ+sin2θ=1)
Hence, proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon