wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove cosAsinA+1cosA+sinA1=cscA+cotA, using the identity csc2A=1+cot2A

Open in App
Solution

(cosAsinA+1)(cosA+sinA1).

Divide both numerator and the denominator by sinA.the sum becomes

(cotA1+cscA)(cotA+1cscA)

=(cscA+cotA1)(cotAcscA+1)

=cscA+cotA(csc2Acot2A)cotAcscA+1

=(cscA+cotA)(cscA+cotA)(cscAcotA)cotAcscA+1

=(cscA+cotA)[1(cscAcotA)]cotAcscA+1

=(cscA+cotA)(1cscA+cotA)cotAcscA+1

=(cscA+cotA)(cotAcscA+1)cotAcscA+1

=(cscA+cotA).cotAcscA+1cotAcscA+1

=cscA+cotA.

Identities used:
1+cot2A=csc2A
cscA=1sinA

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon