wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove - cos2θ1+sin2θ=tan(π4θ)

Open in App
Solution

LHS=cos2θ1+sin2θ=cos2θsin2θsin2θ+cos2θ+2sinθcosθ=1tan2θtan2θ+1+2tanθ

=(1tan2θ)(1+tanθ)2=(1tanθ)(1+tanθ)(1+tanθ)2=1tanθ1+tanθ

=tan(π4)tanθ1+tan(π4).tanθ=tan[π4θ]=R.H.S

Hence proved


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon