LHS=cos2θ1+sin2θ=cos2θ−sin2θsin2θ+cos2θ+2sinθcosθ=1−tan2θtan2θ+1+2tanθ
=(1−tan2θ)(1+tanθ)2=(1−tanθ)(1+tanθ)(1+tanθ)2=1−tanθ1+tanθ
=tan(π4)−tanθ1+tan(π4).tanθ=tan[π4−θ]=R.H.S
Hence proved