wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove cotAcosAcotA+cosA=cotAcosAcotAcosA.

Open in App
Solution

Simplifying the LHS of cotAcosAcotA+cosA=cotAcosAcotAcosA.


cotAcosAcotA+cosA=cosAsinAcosAcosAsinA+cosA


=cos2AcosA+cosAsinA


=1sin2AcosA(1+sinA)


=(1sinA)(1+sinA)cosA(1+sinA)


=1sinAcosA


Now, simplifying the RHS of cotAcosAcotAcosA=cotAcosAcotAcosA.


cotAcosAcotAcosA=cosAsinAcosAcosAsinA×cosA


=cosAcosAsinAcos2A


=cosA(1sinA)cos2A


=1sinAcosA


This shows that LHS=RHS.


flag
Suggest Corrections
thumbs-up
4
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon