Simplifying the LHS of cotAcosAcotA+cosA=cotA−cosAcotAcosA.
cotAcosAcotA+cosA=cosAsinAcosAcosAsinA+cosA
=cos2AcosA+cosAsinA
=1−sin2AcosA(1+sinA)
=(1−sinA)(1+sinA)cosA(1+sinA)
=1−sinAcosA
Now, simplifying the RHS of cotA−cosAcotAcosA=cotA−cosAcotAcosA.
cotA−cosAcotAcosA=cosAsinA−cosAcosAsinA×cosA
=cosA−cosAsinAcos2A
=cosA(1−sinA)cos2A
=1−sinAcosA
This shows that LHS=RHS.