wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove: (sin7x+sin5x)+(sin9x+sin3x)(cos7xcos5x)+(cos9xcos3x)=tan6x

Open in App
Solution

Taking LHS-

Solving numerator
(sin7x+sin5x)+(sin9x+sin3x)

sinx+siny=2sin(x+y2)cos(xy2)

2sin(6x).cos(x)+2sin6x.cos3x

2sin6x(cosx+cos3x)(1)

Now, solving denominator-

(cos7x+cos5x)+(cos9x+cos3x)

cosx+cosy=2cos(x+y2)cos(xy2)

2cos(6x)cosx+2cos6x.cos3x

2cos6x(cosx+cos3x)(2)

Now solving LHS-

LHS =(1)(2)=sin6xcos6x=tan6x= RHS

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon