wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

Prove 3tanθ3cosecθsecθ=sinθcosθ+sin2θsin2θ(cosθsinθ)

Open in App
Solution

Consider the given expression.

3tanθ3cosecθsecθ

=3sinθcosθ3×1sinθ1cosθ

=3cosθsinθcosθcosθsinθsinθcosθ

=(3cosθsinθ)sinθ(cosθsinθ)

=(3sinθcosθsin2θ)(cosθsinθ)

=sinθcosθ+2sinθcosθsin2θ(cosθsinθ)

=sinθcosθ+sin2θsin2θ(cosθsinθ)

Hence, Proved


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon