Consider the given expression.
3−tanθ3cosecθ−secθ
=3−sinθcosθ3×1sinθ−1cosθ
=3cosθ−sinθcosθcosθ−sinθsinθcosθ
=(3cosθ−sinθ)sinθ(cosθ−sinθ)
=(3sinθcosθ−sin2θ)(cosθ−sinθ)
=sinθcosθ+2sinθcosθ−sin2θ(cosθ−sinθ)
=sinθcosθ+sin2θ−sin2θ(cosθ−sinθ)
Hence, Proved