L.H.S
secθ+tanθcosecθ+cotθ
=(secθ+tanθ)×(secθ−tanθ)(secθ−tanθ)×1(cosecθ+cotθ)×(cosecθ−cotθ)(cosecθ−cotθ)
=(sec2θ−tan2θ)(secθ−tanθ)×(cosecθ−cotθ)(cosec2θ−cot2θ)
We know that
sec2θ−tan2θ=1
cosec2θ−cot2θ=1
Therefore,
=1(secθ−tanθ)×(cosecθ−cotθ)1
=(cosecθ−cotθ)(secθ−tanθ)
R.H.S
Hence, proved.