wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove sin3θ+sinθ+sin2θcos3θ+cosθ+cos3θ=tan2θ

Open in App
Solution

sin3θ+sinθ+sin2θcos3θ+cosθ+cos2θ=tan2θ⎢ ⎢sinx+siny=2sinx+y2coszy2cosx+cosy=2cosx+y2cosx+y2⎥ ⎥LHS=2sin3θ+2cos3θ2+sin2θ2cos3θ+θ2cos3θ2+cos2θLHS=2sin2θcosθ+sin2θ2cos2θcosθ+cos2θLHS=sin2θ(2cosθ+1)cos2θ(2cosθ+1)=tan2θ=RHS

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Progression - Sum of n Terms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon