LHS =sinθ1−cosθ
=sinθ(1+cosθ)1−cos2θ
=(1+cosθ)sinθsin2θ
=1+cosθsinθ
=cosecθ+cotθ
= RHS
Hence proof
Prove the following trigonometric identities.(i) 1+cosθ+sinθ1+cosθ−sinθ=1+sinθcosθ
(ii) sinθ−cosθ+1sinθ+cosθ−1=1secθ−tanθ
(iii) cosθ−sinθ+1cosθ+sinθ−1=cosecθ+cotθ
(iv) (sinθ+cosθ)(tanθ+cotθ)=secθ+cosecθ
If (cosecθ−sinθ)=a3 and (secθ−cosθ)=b3 , prove that
a2b2(a2+b2)=1