wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove : tanθ1cotθ+cotθ1tanθ=1+secθcosecθ

Open in App
Solution

Consider the L.H.S.

=tanθ1cotθ+cotθ1tanθ

=sinθcosθsinθcosθsinθ+cosθsinθcosθsinθcosθ

=sin2θcosθ(sinθcosθ)+cos2θsinθ(cosθsinθ)

=sin2θcosθ(sinθcosθ)cos2θsinθ(sinθcosθ)

=sin3θcos3θsinθcosθ(sinθcosθ)

=(sin2θ+cos2θ+cosθsinθ)(sinθcosθ)sinθcosθ(sinθcosθ)

=(1+cosθsinθ)sinθcosθ

=1 sinθcosθ+1

=1+secθcosecθ


Henced, proved.


flag
Suggest Corrections
thumbs-up
39
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon