wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove:
tanθ1cotθ+cotθ1tanθ=1+secθcscθ

Open in App
Solution


LHS=(tanθ1cotθ)+(cotθ1tanθ)=((sinθcosθ)1(cosθsinθ))+((cosθsinθ)1(sinθcosθ))=(sin2θcosθ(sinθcosθ))+(cos2θsinθ(cosθsinθ))=(1sinθcosθ)[(sin2θcosθ)(cos2θsinθ)]=(1sinθcosθ)[(sin3θcos3θsinθcosθ)]=(1×(sinθcosθ)(sin2θ+sinθcosθ+cos2θ)(sinθcosθ)sinθcosθ)=(1+sinθcosθsinθcosθ)=secθ×cosecθ+1=1+secθcosecθ=RHShenceproved!


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Angle and Its Measurement
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon