LHS=(tanθ1−cotθ)+(cotθ1−tanθ)=((sinθcosθ)1−(cosθsinθ))+((cosθsinθ)1−(sinθcosθ))=(sin2θcosθ(sinθ−cosθ))+(cos2θsinθ(cosθ−sinθ))=(1sinθ−cosθ)[(sin2θcosθ)−(cos2θsinθ)]=(1sinθ−cosθ)[(sin3θ−cos3θsinθcosθ)]=(1×(sinθ−cosθ)(sin2θ+sinθcosθ+cos2θ)(sinθ−cosθ)sinθcosθ)=(1+sinθcosθsinθcosθ)=secθ×cosecθ+1=1+secθcosecθ=RHShenceproved!