Simplify the LHS of tanθ1−cotθ+cotθ1−tanθ=1+tanθ+cotθ
tanθ1−cotθ+cotθ1−tanθ=tanθ1−1tanθ+1tanθ1−tanθ
=tan2θtanθ−1+1tanθ(1−tanθ)
=tan3θ−1tanθ(tanθ−1)
=(tanθ−1)(tan2θ+tanθ+1)tanθ(tanθ−1)
=tanθ+1+1tanθ
=sinθcosθ+1+cosθsinθ
=sin2θ+sinθcosθ+cos2θsinθcosθ
=cosθsinθ+1cosθsinθ
=1+1cosθsinθ
=1+1cosθ×1sinθ
=1+secθcscθ
Now simplify the RHS of tanθ1−cotθ+cotθ1−tanθ=1+tanθ+cotθ
1+tanθ+cotθ=1+tanθ+1tanθ
=1+sinθcosθ+cosθsinθ
=sin2θ+sinθcosθ+cos2θsinθcosθ
=cosθsinθ+1cosθsinθ
=1+1cosθsinθ
=1+1cosθ×1sinθ
=1+secθcscθ
Therefore, LHS=RHS=1+secθcscθ.