wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove tanθ1cotθ+cotθ1tanθ=1+tanθ+cotθ=1+secθcscθ

Open in App
Solution

Simplify the LHS of tanθ1cotθ+cotθ1tanθ=1+tanθ+cotθ

tanθ1cotθ+cotθ1tanθ=tanθ11tanθ+1tanθ1tanθ

=tan2θtanθ1+1tanθ(1tanθ)

=tan3θ1tanθ(tanθ1)

=(tanθ1)(tan2θ+tanθ+1)tanθ(tanθ1)

=tanθ+1+1tanθ

=sinθcosθ+1+cosθsinθ

=sin2θ+sinθcosθ+cos2θsinθcosθ

=cosθsinθ+1cosθsinθ

=1+1cosθsinθ

=1+1cosθ×1sinθ

=1+secθcscθ

Now simplify the RHS of tanθ1cotθ+cotθ1tanθ=1+tanθ+cotθ

1+tanθ+cotθ=1+tanθ+1tanθ

=1+sinθcosθ+cosθsinθ

=sin2θ+sinθcosθ+cos2θsinθcosθ

=cosθsinθ+1cosθsinθ

=1+1cosθsinθ

=1+1cosθ×1sinθ

=1+secθcscθ

Therefore, LHS=RHS=1+secθcscθ.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon