Prove: 3sin−1x=sin−1(3x−4x3),x∈[−12,12]
Let x=sinθ⇒sin−1x=θ
Thus we have,
R.H.S.=sin−1(3x−4x3)=sin−1(3sinθ−4sin3θ)
=sin−1(sin3θ) [∵sin3A=3sinA−4sin3A]=3θ [∵sin−1(sinA)=A]=3sin−1x=L.H.S.Therefore, 3sin−1x=sin−1(3x−4x3)
Prove that :3sin−1x=sin−1(3x−4x3),xϵ[−12,12].
Prove the following,
3sin−1x=sin−1(3x−4x3),xϵ[−12,12]