Let cos−145=x⇒cosx=45⇒sinx=√1−(45)2=35
∴tanx=34⇒x=tan−134
∴cos−145=tan−134.....(1)
Now,
let cos−1512=y⇒cosy=1213⇒siny=513
∴tany=1213⇒y=tan−1512
∴cos−11213=tan−1512.....(2)
Let
cos−13365=z⇒cosz=3365⇒sinz=5665
∴tanz=5633⇒z=tan−15633
∴cos−13365=tan−15633.....(3)
Now,
L.H.S. =cos−145+cos−11213
=tan−134+tan−1512 [using (1) and (2)]
=tan−134+5121−34.512,[∵tan−1x+tan−1y=tan−1x+y1−xy]
=tan−136+2048−15
=tan−15633 [By 3]
= R.H.S.