Let I=∫10sin−1xdx
⇒I=∫10sin−1x⋅1⋅dx
Integrating by parts, we obtain
I=[sin−1x⋅x]10−∫101√1−x2⋅xdx
=[xsin−1x]10+12∫10(−2x)√1−x2dx
Let 1−x2=t⇒−2xdx=dt
When x=0,t=1 and when x=1,t=0
I=[xsin−1x]10+12∫01dt√t
=[xsin−1x]10+12[2√t]01
=sin−1(1)+[−√1]
=π2−1
Hence, the given result is proved.