wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove: sin1817+sin135=tan17736

Open in App
Solution

Let sin1817=x.
Then, sinx=817cosx=1(817)2=225289=1517

tanx=815x=tan1815

sin1817=tan1815 ......(1)

Now, let sin135=y.
Then, siny=35cosy=1(35)2=1625=45

tany=34y=tan134

sin135=tan134 ......(2)

Now, we have:
L.H.S.=tan1815+tan134 ...[Using 1 and 2]
=tan1815+341815×34
=tan1(32+456024)

=tan17736=R.H.S.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon