wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove: tan1(1+x1x1+x+1x)=π412cos1x,12x1
[Hint: putx=cos2θ]

Open in App
Solution

Put x=cos2θ
Then, we have,
L.H.S. =tan1(1+x1x1+x+1x)

=tan1(1+cos2θ1cos2θ1+cos2θ+1cos2θ)

=tan1(2cos2θ2sin2θ2cos2θ+2sin2θ)

=tan1(2cosθ2sinθ2cosθ+2sinθ)

=tan1(cosθsinθcosθ+sinθ)=tan1(1tanθ1+tanθ)

=tan11tan1(tanθ)

=π4θ=π412cos1x=R.H.S.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon