Prove 11.4+14.7+17.10+⋯+1(3n−2)(3n+1)=n(3n+1)
11.4+14.7+17.10+⋯+1(3n−2)(3n+1)=n(3n+1)
For n = 1P(1)=1(3×1−2)(3×1+1)=1(3×1+1)⇒11×4=14⇒14=14∴P (1) is trueLet P (n) be true for n = k ∴P(k)=11.4+14.7+17.10+⋯+1(3n−2)(3k+1)=n(3k+1)For n = k + 1R.H.S.=k+1(3k+1)L.H.S.=k(3k+1)+1(3k+1)(3k+4)=1(3k+1)[k+13k+4]=1(3k+1)[3k2+4k+13k+4]=1(3k+1)[3k62+3k+k+13k+4]=1(3k+1)[(3k+1)(k+1)3k+4]=k+13k+4
∴ P(k + 1) is true
thus P(k) is true ⇒P(k+1) is true
Hence by principle fo mathematical induction,