Ans.21=12+22+42 and we know that
(l21+m21)+n21(l22+m22+n22)−(l1l2+m1m2+n2)2=∣∣∣l1m1l2m2∣∣∣2+∣∣∣m1n1m2n2∣∣∣2+∣∣∣n1l1n2l2∣∣∣2
Above is Lagrange's Identity (12+22+42)(a2+b2+c2)−(1.a+2.b+4.c)2=∣∣∣121b∣∣∣2+∣∣∣24bc∣∣∣2+∣∣∣1a∣∣∣2 or 0=(b−2a)2+4(c−2b)2+4a−c)2
Hence each bracket is zero.
∴b=2a,2b=c,c=4a or a=b2=c4=k∴a,b,c are k,2k,4k which are in G.P of common ratio 2.