C14suggest∫10C1x3dxC27 suggest
∫10C2(x3)2dx, Hence consider ∫12(1−x3)ndx
∫12[1−C1x3+C2(x3)2+.....+(−10nCn(x3)n]dx
C0−C14+C27−.......+(−1)2Cn3n+1 = L. H. S.
Again Im=∫101.(1−x3)ndx
=[x(1−x3)n]∫10−n∫10x(1−x3)n(−3x2)dx
We have integrated by parts
or In=0+3n∫10x3(1−x3)n−1dx
=3n∫10[1−(1−x3)](1−x3)n−1
=3n[In−1−In]
∴In(3n+1)=3nIn−1
∴In=3n3n+1In−1=3n3n+13(n−1)3n−2In−1
3n3n+13(n−1)3n−2In−1.....3.13.1+1.I0
=3n.n!(3n+1)....7.4.11 R. H. S.
as I0=∫10(1−x3)0dx=∫101.dx=[x]10=1