wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove:
π0xsinx1+cos2xdx=π24

Open in App
Solution

I=π0xsinx1+cos2xdx...(1)
using property definite integral

baf(x)dx=baf(a+bx)dx

I=ba(πx)sin(πx)1+cos2(πx)dx

I=ba(πx)sinx1+cos2xdx....(2)

adding (1)& (2), we get

I+I=ba(πx)sinx1+cos2xdx+ba(πx)sinx1+cos2x

2I=ba(πSinx)sinx1+cos2xdx

I=π2π0Sinx1+Cos2xdx

=π22π/20Sinx1+Cos2xdx

=ππ/20d(cosx)1+Cos2xdx

=π[tan1(cosx)]π/20

π[tan1cosπ2tan1(cos0)]

π[0π4]

=π24

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon