wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove: dxx2a2=log(x+x2a2a)+c

Open in App
Solution

1x2a2dx
substitute μ=xa dx=a du
aa2x2a2du
Simplifying, take a common from denominator
1u21du
Subsitute u=sec(v),(v)=arcsec(u)
du=sec(v)tan(v)dv
sec(v)tan(v)dvsec2(v)1
Simply using sec2(v)=1tan2(v)
sec(v)dv
Use the common Integral
sec(v)dv=ln|tan(v)+sec(v)|
Substitute back v=arcsec(u)
ln|tan(arcsec(u))+sec(arcsec(u))|
using sec(arcsec(u))=u
and using tan(arcsec(u))=u11u2
lnu+μ11u2+C
now put u xa
and we get
ln|x2a2+xa|+C


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon