Prove (1+11)(1+12)(1+13)⋯(1+1n)=(n+1).
(1+11)(1+12)(1+13)⋯(1+1n)=(n+1).
For n = 1
P(1)=(1+11)=1+1⇒2=2∴P(1)is trueLet P (n) be true for n = k ∴P(k)=(1+11)(1+12)(1+13)⋯(1+1k)=(k+1).
For n = k + 1
R.H.S.=(k+1)(1+1k+1)=(k+1)[k+1+1k+1]=(k+2)
∴ P(k + 1 ) is true
Thus P (k) is true ⇒ P(k + 1) is true
hence by principle of mathematical induction,