LHS=(a+b+c)3−a3−b3−c3
=[(a+b+c)3−a3]−[b3+c3]
{x3+y3=(x+y)(x2−xy+y2)x3−y3=(x−y)(x2+xy+y2)}
=(a+b+c−a)[a2+b2+c2+2ab+2bc+2ca+a2+ab+ca+a2]
−(b+c)(b2−bc+c2)
{(x+y+z)2=x2+y2+z2+2xy+2yz+2zx}
=(b+c)[3a2+b2+c2+3ab+2bc+3ca]
−(b+c)(b2−bc+c2)
=(b+c)[3a2+b2+c2+3ab+2bc+3ca−b2+bc−c2]
=(b+c)[3a2+3ab+3bc+3ca]
=3(b+c)[a(a+b)+c(a+b)]
=3(a+b)(b+c)(c+a)= RHS