wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove:
(cosecθsinθ)(secθcosθ)=1tanθ+cotθ

Open in App
Solution

Consider the LHS

(cosecθsinθ)(secθcosθ)=(1sinθsinθ)(1cosθcosθ)=(1sin2θsinθ)(1cos2θcosθ)=cos2θsinθ×sin2θcosθ=sinθcosθ

now, Consider the RHS
1tanθ+cotθ=1sinθcosθ+cosθsinθ=1sin2θ+cos2θsinθcosθ=sinθcosθcos2θ+sin2θ=sinθcosθ(sin2θ+cos2θ=1)

Since, LHS=RHS

Therefore, (cosecθsinθ)(secθcosθ)=1tanθ+cotθ

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definition of Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon