Simplifying LHS of (1+tan2A1+cot2A)=(1−tanA1−cotA)2
(1+tan2A1+cot2A)=1+sin2Acos2A1+cos2Asin2A
=cos2A+sin2Acos2Asin2A+cos2Asin2A
=sin2Acos2A
=tan2A
Now, simplifying the RHS,
(1−tanA1−cotA)2=(1+tan2A−2tanA1+cot2A−2cotA)
=sec2A−2tanAcsc2A−2cotA
=1cos2A−2sinAcosA1sin2A−2cosAsinA
=1−2sinAcosAcos2A1−2sinAcosAsin2A
=sin2Acos2A
=tan2A
Therefore, LHS=RHS=tan2A.