wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove (1+tan2A1+cot2A)=(1tan2A1cot2A)2=tan2A

Open in App
Solution

Simplifying LHS of (1+tan2A1+cot2A)=(1tanA1cotA)2


(1+tan2A1+cot2A)=1+sin2Acos2A1+cos2Asin2A


=cos2A+sin2Acos2Asin2A+cos2Asin2A


=sin2Acos2A


=tan2A


Now, simplifying the RHS,


(1tanA1cotA)2=(1+tan2A2tanA1+cot2A2cotA)


=sec2A2tanAcsc2A2cotA


=1cos2A2sinAcosA1sin2A2cosAsinA


=12sinAcosAcos2A12sinAcosAsin2A


=sin2Acos2A


=tan2A


Therefore, LHS=RHS=tan2A.


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon