Lets evaluate, [1+tan2θ1+cot2θ]
=(1+tan2θ1+(1tan2θ)) [∵cotθ=1tanθ]
=(1+tan2θ)tan2θ(tan2θ+1))
=tan2θ
⇒1+tan2θ1+cot2θ=tan2θ ---(1)
Now, lets evaluate, [1−tanθ1−cotθ]2
=⎡⎢ ⎢ ⎢⎣1−tanθ1−1tanθ⎤⎥ ⎥ ⎥⎦2
=⎡⎢ ⎢ ⎢⎣1−tanθtanθ−1tanθ⎤⎥ ⎥ ⎥⎦2
=[(1−tanθ)×tanθtanθ−1]2
=[−tanθ]2
=tan2θ
⇒[1−tanθ1−cotθ]2=tan2θ ---(2)
From (1) and (2),
[1+tan2θ1+cot2θ]=[1−tanθ1−cotθ]2=tan2θ
Hence, proved.